Total Lab Supplies - Everything for your laboratory

Total Lab Supplies - Everything for your laboratory
Our Head Office in St Helens

Wednesday 26 July 2017

Moon has a water-rich interior

A new study of satellite data finds that numerous volcanic deposits distributed across the surface of the Moon contain unusually high amounts of trapped water compared with surrounding terrains. The finding of water in these ancient deposits, which are believed to consist of glass beads formed by the explosive eruption of magma coming from the deep lunar interior, bolsters the idea that the lunar mantle is surprisingly water-rich.

Scientists had assumed for years that the interior of the Moon had been largely depleted of water and other volatile compounds. That began to change in 2008, when a research team including Brown University geologist Alberto Saal detected trace amounts of water in some of the volcanic glass beads brought back to Earth from the Apollo 15 and 17 missions to the Moon. In 2011, further study of tiny crystalline formations within those beads revealed that they actually contain similar amounts of water as some basalts on Earth. That suggests that the Moon's mantle - parts of it, at least - contain as much water as Earth's.

"The key question is whether those Apollo samples represent the bulk conditions of the lunar interior or instead represent unusual or perhaps anomalous water-rich regions within an otherwise 'dry' mantle," said Ralph Milliken, lead author of the new research and an associate professor in Brown's Department of Earth, Environmental and Planetary Sciences. "By looking at the orbital data, we can examine the large pyroclastic deposits on the Moon that were never sampled by the Apollo or Luna missions. The fact that nearly all of them exhibit signatures of water suggests that the Apollo samples are not anomalous, so it may be that the bulk interior of the Moon is wet."

Full Moon photograph taken 10-22-2010 from Madison, Alabama, USA. By Gregory H. Revera (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons
The research, which Milliken co-authored with Shuai Li, a postdoctoral researcher at the University of Hawaii and a recent Brown Ph.D. graduate, is published in Nature Geoscience.

Detecting the water content of lunar volcanic deposits using orbital instruments is no easy task. Scientists use orbital spectrometers to measure the light that bounces off a planetary surface. By looking at which wavelengths of light are absorbed or reflected by the surface, scientists can get an idea of which minerals and other compounds are present.

The problem is that the lunar surface heats up over the course of a day, especially at the latitudes where these pyroclastic deposits are located. That means that in addition to the light reflected from the surface, the spectrometer also ends up measuring heat.

"That thermally emitted radiation happens at the same wavelengths that we need to use to look for water," Milliken said. "So in order to say with any confidence that water is present, we first need to account for and remove the thermally emitted component."

To do that, Li and Milliken used laboratory-based measurements of samples returned from the Apollo missions, combined with a detailed temperature profile of the areas of interest on the Moon's surface. Using the new thermal correction, the researchers looked at data from the Moon Mineralogy Mapper, an imaging spectrometer that flew aboard India's Chandrayaan-1 lunar orbiter.

The researchers found evidence of water in nearly all of the large pyroclastic deposits that had been previously mapped across the Moon's surface, including deposits near the Apollo 15 and 17 landing sites where the water-bearing glass bead samples were collected.

"The distribution of these water-rich deposits is the key thing," Milliken said. "They're spread across the surface, which tells us that the water found in the Apollo samples isn't a one-off. Lunar pyroclastics seem to be universally water-rich, which suggests the same may be true of the mantle."

The idea that the interior of the Moon is water-rich raises interesting questions about the Moon's formation. Scientists think the Moon formed from debris left behind after an object about the size of Mars slammed into the Earth very early in solar system history. One of the reasons scientists had assumed the Moon's interior should be dry is that it seems unlikely that any of the hydrogen needed to form water could have survived the heat of that impact.

"The growing evidence for water inside the Moon suggest that water did somehow survive, or that it was brought in shortly after the impact by asteroids or comets before the Moon had completely solidified," Li said. "The exact origin of water in the lunar interior is still a big question."

In addition to shedding light on the water story in the early solar system, the research could also have implications for future lunar exploration. The volcanic beads don't contain a lot of water - about .05 percent by weight, the researchers say - but the deposits are large, and the water could potentially be extracted.

"Other studies have suggested the presence of water ice in shadowed regions at the lunar poles, but the pyroclastic deposits are at locations that may be easier to access," Li said. "Anything that helps save future lunar explorers from having to bring lots of water from home is a big step forward, and our results suggest a new alternative."

The research was funded by the NASA Lunar Advanced Science and Exploration Research Program (NNX12AO63G).

For more information visit:-

Tuesday 25 July 2017

On this day in science history: Mars 5 launched

In 1973, the USSR launched Mars 5, on a Proton SL-12/D-1-e booster. It was one of several Soviet Mars probes - Mars 4, 5, 6, and 7 - launched in Jul-Aug 1973. The Mars 5 mission was to orbit Mars, which was achieved on 12 Feb 1974. Each orbit took about 25 hours. It was designed to return information on the composition, structure, and properties of the martian atmosphere and surface. However, after only 22 orbits, the mission ended prematurely due to loss of pressurization in the transmitter housing. Before the failure, data for a small portion of the martian southern hemisphere was captured with about 60 images forwarded over a nine day period. The probe also sent more measurements made by other instruments.

Mars in natural colour in 2007. By ESA - European Space Agency & Max-Planck Institute for Solar System Research for OSIRIS Team ESA/MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA [CC BY-SA 3.0-igo (http://creativecommons.org/licenses/by-sa/3.0-igo)], via Wikimedia Commons
Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, after Mercury. Named after the Roman god of war, it is often referred to as the "Red Planet" because the iron oxide prevalent on its surface gives it a reddish appearance. Mars is a terrestrial planet with a thin atmosphere, having surface features reminiscent both of the impact craters of the Moon and the valleys, deserts, and polar ice caps of Earth.

The rotational period and seasonal cycles of Mars are likewise similar to those of Earth, as is the tilt that produces the seasons. Mars is the site of Olympus Mons, the largest volcano and second-highest known mountain in the Solar System, and of Valles Marineris, one of the largest canyons in the Solar System. The smooth Borealis basin in the northern hemisphere covers 40% of the planet and may be a giant impact feature. Mars has two moons, Phobos and Deimos, which are small and irregularly shaped. These may be captured asteroids, similar to 5261 Eureka, a Mars trojan.

There are ongoing investigations assessing the past habitability potential of Mars, as well as the possibility of extant life. Liquid water cannot exist on the surface of Mars due to low atmospheric pressure, which is less than 1% of the Earth's, except at the lowest elevations for short periods. The two polar ice caps appear to be made largely of water. The volume of water ice in the south polar ice cap, if melted, would be sufficient to cover the entire planetary surface to a depth of 11 meters (36 ft). In November 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. 

The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior.

Mars can easily be seen from Earth with the naked eye, as can its reddish coloring. Its apparent magnitude reaches −2.91, which is surpassed only by Jupiter, Venus, the Moon, and the Sun. Optical ground-based telescopes are typically limited to resolving features about 300 kilometers (190 mi) across when Earth and Mars are closest because of Earth's atmosphere.

For more information, visit:-



Wednesday 19 July 2017

Drinking coffee could lead to a longer life, scientist says

Here's another reason to start the day with a cup of joe: Scientists have found that people who drink coffee appear to live longer.

Drinking coffee was associated with a lower risk of death due to heart disease, cancer, stroke, diabetes, and respiratory and kidney disease for African-Americans, Japanese-Americans, Latinos and whites.

People who consumed a cup of coffee a day were 12 percent less likely to die compared to those who didn't drink coffee. This association was even stronger for those who drank two to three cups a day - 18 percent reduced chance of death.

Lower mortality was present regardless of whether people drank regular or decaffeinated coffee, suggesting the association is not tied to caffeine, said Veronica W. Setiawan, lead author of the study and an associate professor of preventive medicine at the Keck School of Medicine of USC.

A small cup of coffee. By Julius Schorzman (Own work) [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons
"We cannot say drinking coffee will prolong your life, but we see an association," Setiawan said. "If you like to drink coffee, drink up! If you're not a coffee drinker, then you need to consider if you should start."

The study, which will be published in the July 11 issue of Annals of Internal Medicine, used data from the Multiethnic Cohort Study, a collaborative effort between the University of Hawaii Cancer Centre and the Keck School of Medicine.

The ongoing Multiethnic Cohort Study has more than 215,000 participants and bills itself as the most ethnically diverse study examining lifestyle risk factors that may lead to cancer.

"Until now, few data have been available on the association between coffee consumption and mortality in non-whites in the United States and elsewhere," the study stated. "Such investigations are important because lifestyle patterns and disease risks can vary substantially across racial and ethnic backgrounds, and findings in one group may not necessarily apply to others."

Since the association was seen in four different ethnicities, Setiawan said it is safe to say the results apply to other groups.

"This study is the largest of its kind and includes minorities who have very different lifestyles," Setiawan said. "Seeing a similar pattern across different populations gives stronger biological backing to the argument that coffee is good for you whether you are white, African-American, Latino or Asian."

Previous research by USC and others have indicated that drinking coffee is associated with reduced risk of several types of cancer, diabetes, liver disease, Parkinson's disease, Type 2 diabetes and other chronic diseases.

Setiawan, who drinks one to two cups of coffee daily, said any positive effects from drinking coffee are far-reaching because of the number of people who enjoy or rely on the beverage every day.

"Coffee contains a lot of antioxidants and phenolic compounds that play an important role in cancer prevention," Setiawan said. "Although this study does not show causation or point to what chemicals in coffee may have this 'elixir effect,' it is clear that coffee can be incorporated into a healthy diet and lifestyle."

About 62 percent of Americans drink coffee daily, a 5 percent increase from 2016 numbers, reported the National Coffee Association.

As a research institution, USC has scientists from across disciplines working to find a cure for cancer and better ways for people to manage the disease.

The Keck School of Medicine and USC Norris Comprehensive Cancer Center manage a state-mandated database called the Los Angeles Cancer Surveillance Program, which provides scientists with essential statistics on cancer for a diverse population.

Researchers from the USC Norris Comprehensive Cancer Center have found that drinking coffee lowers the risk of colorectal cancer.

But drinking piping hot coffee or beverages probably causes cancer in the esophagus, according to a World Health Organization panel of scientists that included Mariana Stern from the Keck School of Medicine.

In some respects, coffee is regaining its honor for wellness benefits. After 25 years of labelling coffee a carcinogen linked to bladder cancer, the World Health Organization last year announced that drinking coffee reduces the risk for liver and uterine cancer.

"Some people worry drinking coffee can be bad for you because it might increase the risk of heart disease, stunt growth or lead to stomach ulcers and heartburn," Setiawan said. "But research on coffee have mostly shown no harm to people's health."

Setiawan and her colleagues examined the data of 185,855 African-Americans (17 percent), Native Hawaiians (7 percent), Japanese-Americans (29 percent), Latinos (22 percent) and whites (25 percent) ages 45 to 75 at recruitment. Participants answered questionnaires about diet, lifestyle, and family and personal medical history.

They reported their coffee drinking habits when they entered the study and updated them about every five years, checking one of nine boxes that ranged from "never or hardly ever" to "4 or more cups daily." They also reported whether they drank caffeinated or decaffeinated coffee. The average follow-up period was 16 years.

Sixteen percent of participants reported that they did not drink coffee, 31 percent drank one cup per day, 25 percent drank two to three cups per day and 7 percent drank four or more cups per day. The remaining 21 percent had irregular coffee consumption habits.

Over the course of the study, 58,397 participants - about 31 percent - died. Cardiovascular disease (36 percent) and cancer (31 percent) were the leading killers.

The data was adjusted for age, sex, ethnicity, smoking habits, education, pre-existing disease, vigorous physical exercise and alcohol consumption.

Setiawan's previous research found that coffee reduces the risk of liver cancer and chronic liver disease. She is currently examining how coffee is associated with the risk of developing specific cancers.

Researchers from the University of Hawaii Cancer Centre and the National Cancer Institute contributed to this study. The study used data from the Multiethnic Cohort Study, which is supported by a $19,008,359 grant from the National Cancer Institute of the National Institutes of Health.

For more information, visit:-



Monday 17 July 2017

On this day in science history: the earliest recorded confirmed total solar eclipse occurred

In 709 BC, the earliest record of a confirmed total solar eclipse was written in China. From: Ch'un-ch'iu, book I: "Duke Huan, 3rd year, 7th month, day jen-ch'en, the first day (of the month). The Sun was eclipsed and it was total." This is the earliest direct allusion to a complete obscuration of the Sun in any civilisation. The recorded date, when reduced to the Julian calendar, agrees exactly with that of a computed solar eclipse. Reference to the same eclipse appears in the Han-shu ('History of the Former Han Dynasty') (Chinese, 1st century AD): "...the eclipse threaded centrally through the Sun; above and below it was yellow." Earlier Chinese writings that refer to an eclipse do so without noting totality.

Total Solar Eclipse. I, Luc Viatour [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons
Having fascinated mankind for years, the Sun is the star at the centre of the Solar System. It is a nearly perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 109 times that of Earth, and its mass is about 330,000 times that of Earth, accounting for about 99.86% of the total mass of the Solar System. About three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

The Sun is a G-type main-sequence star (G2V) based on its spectral class. As such, it is informally referred to as a yellow dwarf. It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core. It is thought that almost all stars form by this process.

The Sun is roughly middle-aged; it has not changed dramatically for more than four billion years, and will remain fairly stable for more than another five billion years. After hydrogen fusion in its core has diminished to the point at which it is no longer in hydrostatic equilibrium, the core of the Sun will experience a marked increase in density and temperature while its outer layers expand to eventually become a red giant. It is calculated that the Sun will become sufficiently large to engulf the current orbits of Mercury and Venus, and render Earth uninhabitable.

The enormous effect of the Sun on Earth has been recognized since prehistoric times, and the Sun has been regarded by some cultures as a deity. The synodic rotation of Earth and its orbit around the Sun are the basis of the solar calendar, which is the predominant calendar in use today.

For more information, visit:


Monday 10 July 2017

Reconciling predictions of climate change

Harvard University researchers have resolved a conflict in estimates of how much the Earth will warm in response to a doubling of carbon dioxide in the atmosphere.

That conflict - between temperature ranges based on global climate models and paleoclimate records and ranges generated from historical observations - prevented the United Nations' Intergovernmental Panel on Climate Change (IPCC) from providing a best estimate in its most recent report for how much the Earth will warm as a result of a doubling of CO2 emissions.

The researchers found that the low range of temperature increase - between 1 and 3 degrees Celsius - offered by the historical observations did not take into account long-term warming patterns. When these patterns are taken into account, the researchers found that not only do temperatures fall within the canonical range of 1.5 to 4.5 degrees Celsius but that even higher ranges, perhaps up to 6 degrees, may also be possible.

The research is published in Science Advances.

CO2 in Earth's atmosphere if half of global-warming emissions are not absorbed (NASA simulation). By NASA/GSFC [Public domain], via Wikimedia Commons
It's well documented that different parts of the planet warm at different speeds. The land over the northern hemisphere, for example, warms significantly faster than water in the Southern Ocean.

"The historical pattern of warming is that most of the warming has occurred over land, in particular over the northern hemisphere," said Cristian Proistosescu, PhD '17, and first author of the paper. "This pattern of warming is known as the fast mode - you put CO2 in the atmosphere and very quickly after that, the land in the northern hemisphere is going to warm."

But there is also a slow mode of warming, which can take centuries to realize. That warming, which is most associated with the Southern Ocean and the Eastern Equatorial Pacific, comes with positive feedback loops that amplify the process. For example, as the oceans warm, cloud cover decreases and a white reflecting surface is replaced with a dark absorbent surface.

The researchers developed a mathematical model to parse the two different modes within different climate models.

"The models simulate a warming pattern like today's, but indicate that strong feedbacks kick in when the Southern Ocean and Eastern Equatorial Pacific eventually warm, leading to higher overall temperatures than would simply be extrapolated from the warming seen to date," said Peter Huybers, Professor of Earth and Planetary Sciences and of Environmental Science and Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and co-author of the paper.

Huybers and Proistosescu found that while the slow mode of warming contributes a great deal to the ultimate amount of global warming, it is barely present in present-day warming patterns. "Historical observations give us a lot of insight into how climate changes and are an important test of our climate models," said Huybers, "but there is no perfect analogue for the changes that are coming."

For more information visit:- 


Monday 3 July 2017

On this day in science history: foam rubber was developed

In 1929, foam rubber was developed at the Dunlop Latex Development Laboratories in Birmingham. British scientist E.A. Murphy whipped up the first batch in 1929, using an ordinary kitchen mixer to froth natural latex rubber. His colleagues were unimpressed - until they sat on it. Within five years it was everywhere, on motorcycle seats, on London bus seats, Shakespeare Memorial Theatre seats, and eventually in mattresses.

In 1937 isocyanate based materials were first used for the formation of foam rubbers, after World War II styrene-butadiene rubber replaced many natural types of foam. Foam rubbers have been used commercially for a wide range of applications since around the 1940s. There are two types of foam in use today. One is flexible foam and the other is rigid foam. The flexible version of the foam is used in furniture, car seats, to insulate walls, and even in the very shoes that we wear. The rigid form of foam rubber is used in insulating buildings, appliances like freezers and refrigeration trucks. 

Foam rubber mattress [Public domain], via Wikimedia Commons
So, how is foam rubber manufactured? Rates of polymerization can range from many minutes to just a few seconds. Fast reacting polymers feature short cycle periods and require the use of machinery to thoroughly mix the reacting agents. Slow polymers may be mixed by hand, but require long periods on mixing. As a result industrial application tends to use machinery to mix products. Product processing can range from a variety of techniques including, but not limited to spraying, open pouring, and molding.
  • Material preparation - Liquid and solid material generally arrive on location via rail or truck, once unloaded liquid materials are stored in heated tanks. When producing slabstock  typically two or more polymers streams are used.
  • Mixing - Open pouring, better known as continuous dispensing is used primarily in the formation of rigid, low density foams. Specific amounts of chemicals are mixed into a mixing head, much like an industrial blender. The foam is poured onto a conveyor belt, where it then cures for cutting.
  • Curing and Cutting - After curing on the conveyor belt the foam is then forced through a horizontal band saw. This band saw cuts the pieces in a set size for the application. General contracting uses 4’x12’x2’’.
  • Further processing - Once cut and cured the slabstock can either be sold or a lamination process can be applied. This process turns the slabstock into a rigid foam board known as boardstock. Boardstock is used for metal roof insulation, oven insulation, and many other durable goods.
Unfortunately, because of the variety in polyurethane chemistries, it is difficult to recycle foam materials using a single method. Reusing slab stock foams for carpet backing is how the majority of recycling is done. This method involves shredding the scrap and bonding the small flakes together to form sheets. Other methods involve breaking the foam down into granules and dispersing them into a polyol blend to be molded into the same part as the original. The recycling process is still ever developing for foam rubber and the future will hopefully unveil new and easier ways for recycling.

For more information, visit:-