Total Lab Supplies - Everything for your laboratory

Total Lab Supplies - Everything for your laboratory
Our Head Office in St Helens

Tuesday, 9 February 2016

On this day in history – an atom of the element 112 was created

In 1996, only a little more than a year after they created element 111, a team of German scientists led by Peter Armbruster at the Gesellschaft für schwerionenforschung (GSI) facility at Darmstadt, Germany, claimed to have created an atom of the element 112. Its nucleus has 112 protons and 166 neutrons, giving it a mass number of 277. As a new element it was named ununbium, symbol Uub, according to an internationally adopted system for naming new elements. This was based on the presence of one atom of the element made by accelerating zinc atoms to high speed and bombarding them into lead. When an atom of each fused to make the new nucleus, it lasted a fraction of a thousandth of a second before decaying, emitting an alpha particle to become a nucleus of element 110.

What is an element?

A chemical element or element is a species of atoms having the same number of protons in their atomic nuclei (i.e. the same atomic number, Z). There are 118 elements that have been identified, of which the first 94 occur naturally on Earth with the remaining 24 being synthetic elements. There are 80 elements that have at least one stable isotope and 38 that have exclusively radioactive isotopes, which decay over time into other elements. Iron is the most abundant element (by mass) making up the Earth, while oxygen is the most common element in the crust of the earth.

The Periodic Table, by Sandbh (Own work) via Wikimedia Commons
Chemical elements constitute all of the ordinary matter of the universe. However astronomical observations suggest that ordinary observable matter is only approximately 15% of the matter in the universe: the remainder is dark matter, the composition of which is unknown, but it is not composed of chemical elements. The two lightest elements, hydrogen and helium were mostly formed in the Big Bang and are the most common elements in the universe. The next three elements (lithium, beryllium and boron) were formed mostly by cosmic ray spallation, and are thus more rare than those that follow. Formation of elements with from six to twenty six protons occurred and continues to occur in main sequence stars via stellar nucleosynthesis. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars. Elements with greater than twenty-six protons are formed by supernova nucleosynthesis in supernovae, which, when they explode, blast these elements far into space as planetary nebulae, where they may become incorporated into planets when they are formed.

The term "element" is used for a kind of atom with a given number of protons (regardless of whether they are or they are not ionized or chemically bonded, e.g. hydrogen in water) as well as for a pure chemical substance consisting of a single element (e.g. hydrogen gas).

When different elements are chemically combined, with the atoms held together by chemical bonds, they form chemical compounds. Only a minority of elements are found uncombined as relatively pure minerals. Among the more common of such "native elements" are copper, silver, gold, carbon (as coal, graphite, or diamonds), and sulphur. All but a few of the most inert elements, such as noble gases and noble metals, are usually found on Earth in chemically combined form, as chemical compounds. While about 32 of the chemical elements occur on Earth in native uncombined forms, most of these occur as mixtures. For example, atmospheric air is primarily a mixture of nitrogen, oxygen, and argon, and native solid elements occur in alloys, such as that of iron and nickel.

The history of the discovery and use of the elements began with primitive human societies that found native elements like carbon, sulphur, copper and gold. Later civilizations extracted elemental copper, tin, lead and iron from their ores by smelting, using charcoal. Alchemists and chemists subsequently identified many more, with almost all of the naturally-occurring elements becoming known by 1900.

The properties of the chemical elements are summarized on the periodic table, which organizes the elements by increasing atomic number into rows ("periods") in which the columns ("groups") share recurring ("periodic") physical and chemical properties. Save for unstable radioactive elements with short half-lives, all of the elements are available industrially, most of them in high degrees of purity.

For more information visit:-

No comments:

Post a Comment