Hydrofluoric acid is a highly corrosive acid, capable of dissolving many materials, especially oxides. Its ability to dissolve glass has been known since the 17th century, even before hydrofluoric acid had been prepared in large quantities by Carl Wilhelm Scheele in 1771. Because of its high reactivity toward glass and moderate reactivity toward many metals, hydrofluoric acid is usually stored in plastic containers (although PTFE is slightly permeable to it).
Hydrogen fluoride gas is an acute poison that may immediately and permanently damage lungs and the corneas of the eyes. Aqueous hydrofluoric acid is a contact-poison with the potential for deep, initially painless burns and ensuing tissue death. By interfering with body calcium metabolism, the concentrated acid may also cause systemic toxicity and eventual cardiac arrest and fatality, after contact with as little as 160 cm2 (25 square inches) of skin.
Production
Hydrofluoric acid is produced by treatment of the mineral fluorite (CaF2) with concentrated sulphuric acid. When combined at 265 °C, these two substances react to produce hydrogen fluoride and calcium sulphate according to the following chemical equation:
- CaF2 + H2SO4 → 2 HF + CaSO4
Health & Safety
Hydrofluoric acid is a highly corrosive liquid and is a contact poison. It should be handled with extreme care, beyond that accorded to other mineral acids. Owing to its low dissociation constant, HF as a neutral lipid-soluble molecule penetrates tissue more rapidly than typical mineral acids. Because of the ability of hydrofluoric acid to penetrate tissue, poisoning can occur readily through exposure of skin or eyes, or when inhaled or swallowed. Symptoms of exposure to hydrofluoric acid may not be immediately evident. HF interferes with nerve function, meaning that burns may not initially be painful. Accidental exposures can go unnoticed, delaying treatment and increasing the extent and seriousness of the injury.
Once absorbed into blood through the skin, it reacts with blood calcium and may cause cardiac arrest. Burns with areas larger than 25 square inches (160 cm2) have the potential to cause serious systemic toxicity from interference with blood and tissue calcium levels. In the body, hydrofluoric acid reacts with the ubiquitous biologically important ions Ca2+ and Mg2+. Formation of insoluble calcium fluoride is proposed as the etiology for both precipitous fall in serum calcium and the severe pain associated with tissue toxicity. In some cases, exposures can lead to hypocalcemia. Thus, hydrofluoric acid exposure is often treated with calcium gluconate, a source of Ca2+ that sequesters the fluoride ions. HF chemical burns can be treated with a water wash and 2.5% calcium gluconate gel. or special rinsing solutions. However, because it is absorbed, medical treatment is necessary; rinsing off is not enough. Intra-arterial infusions of calcium chloride have also shown great effectiveness in treating burns.
P&R Labpak can supply HF antidote gel - just ask for details.
For more information visit:-
http://en.wikipedia.org/wiki/Hydrofluoric_acid
http://www.hse.gov.uk/pubns/indg307.pdf
This link covers HF poisoning, effects and precautions
No comments:
Post a Comment